The effects of testing methods on the flexural fatigue life of human cortical bone.

نویسندگان

  • L V Griffin
  • J C Gibeling
  • R B Martin
  • V A Gibson
  • S M Stover
چکیده

A flexural model of four-point bending fatigue that has been experimentally validated for human cortical bone under load control was used to determine how load and displacement control testing affects the fatigue behavior of human cortical bone in three-point and symmetric four-point bending. Under load control, it was predicted that three-point bending produced no significant differences in fatigue life when compared to four-point bending. However, three-point bending produced less stiffness loss with increasing cycles than four-point bending. In four-point bending, displacement control was predicted to produce about one and a half orders of magnitude greater fatigue life when compared to load control. This prediction agrees with experimental observations of equine cannon bone tested in load and displacement control (Gibson et al., 1998). Displacement controlled three-point bending was found to produce approximately a 25% greater fatigue life when compared to load control. The prediction of longer fatigue life under displacement control may have clinical relevance for the repair of damaged bone. The model can also be adapted to other geometric configurations, including modeling of whole long bones, and with appropriate fatigue data, other cortical bone types.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Model of flexural fatigue damage accumulation for cortical bone.

Analytical models that predict modulus degradation in cortical bone subjected to uniaxial fatigue loading in tension and compression are presented. On the basis of experimental observations, damage was modeled as self-limiting for tension but not for compression. These mechanistic uniaxial damage models were then developed into a model for flexural fatigue of cortical bone based on laminated be...

متن کامل

Mechanical Properties of Graphene/Epoxy Nanocomposites under Static and Flexural Fatigue Loadings

In the present study, the effect of various weight fractions of graphene nanoplatelet (GPL) on flexural fatigue behavior of epoxy polymer has been investigated at room temperature and generally the temperature was monitored on the surface of specimen during each test. The flexural stiffness of grapheme nano-platelet/epoxy nanocomposites at 0.1, 0.25 and 0.5 wt. % as a main effective parameter o...

متن کامل

Effect of Coating Materials on the Fatigue Behavior of Hip Implants: A Three-dimensional Finite Element Analysis

This study aims to validate, using finite element analysis (FEA), the design concept by comparing the fatigue behavior of hip implant stems coated with composite (carbon/PEEK) and polymeric (PEEK) coating materials corresponding to different human activities: standing up, normal walking and climbing stairs under dynamic loadings to find out which of all these models have a better performance in...

متن کامل

The Effect of Carbon Nano-tube on the Fatigue Life of Asphalt Mixtures

The fatigue cracks are observed in asphalt surfaces much more than ruts. This paper deals with the influence of carbon nano-tube on the fatigue life of asphalt mixtures. These samples are made up of the slabs cut by the asphalt cutting saw. Fatigue beams contain 0, 0.3, 0.6, 0.9, 1.2, and 1.5 percent of Carbon Nano-tube. The fatigue experiment was conducted using a 4-point semi-sinusoidal loadi...

متن کامل

The effect of osteoporosis treatments on fatigue properties of cortical bone tissue☆

Bisphosphonates are commonly prescribed for treatment of osteoporosis. Long-term use of bisphosphonates has been correlated to atypical femoral fractures (AFF). AFFs arise from fatigue damage to bone tissue that cannot be repaired due to pharmacologic treatments. Despite fatigue being the primary damage mechanism of AFFs, the effects of osteoporosis treatments on fatigue properties of cortical ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomechanics

دوره 32 1  شماره 

صفحات  -

تاریخ انتشار 1999